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The Discontinuity Problem of a
Rectangular Dielectric Post in
a Rectangular Waveguide

Katerina Siakavara and John N. Sahalos, Senior Member, IEEE

Abstract —A simple numerical technique for the solution of
the discontinuity problem of a symmetric loaded rectangular
dielectric post centered in a rectangular waveguide is presented.
The waveguide is divided into three regions where the field is
expressed in suitable waveguide modes. By applying the continu-
ity conditions at the common surfaces of the regions, a system of
linear equations determining the reflection and transmission
coefficients is formed. Several examples are compared with
experimental results and show the validity of the method.

I. INTRODUCTION

ARIOUS methods for studying the post interaction
Vin the microwave region have been proposed [1]-[13].
A post offers the advantage of several applications by
using a small amount of material. So instead of filling the
entire cross section of a waveguide for permittivity and
conductivity measurements or for filter design we can use
posts.

A number of comprehensive works have dealt with
circular posts by using approximate analytical or numeri-
cal methods [1]-[12]. In this paper we study posts of
rectangular cross section which can be made. easily. An
excellent study of such a problem has been made recently
by Yoshikado and Taniguchi [13]. In their work, an ap-
proximate analytical solution for the Helmholtz equation
was derived and a simple method for measuring the
complex conductivity of a square lossy dielectric post was
established. The analysis of Yoshikado and Taniguchi has
shown that there are cases for which there is no agree-
ment between the theoretical and experimental results.
This is due to their formulation, which does not satisty
the boundary conditions at the four corners of the post.
In our work we give the field expression in the irteraction
region as a function of the partially filled rectangular
waveguide modes. We thus give a better physical descrip-
tion of the field and the results become more reasonable.

II. FORMULATION

We start from a short presentation of a strip-loaded
rectangular waveguide. The propagation problem of this
configuration has been treated extensively by Lewin [14].

Manuscript received October 22, 1990; revised March 18, 1991.

The authors are with the Department of Physics, University of Thessa-
loniki, Thessaloniki, 54006 Greece.

IEEE Log Number 9101646.

e

82 €

€

1 1

—+§d§1—-t—’:d «—

H
H

1 []

' H !

Fig. 1. Geometry of a symmetric strip loaded waveguide.

Using his formulation for a symmetric geometry (see Fig.
1), we can find the eigenvalue equation which gives the
propagation constant [13];

h tan (h,d
tan(hzt)+2—2 (had) =0

hy )\ s
1- . tan” (hyd)

(1)

1

Equation (1) can be split into two equations:

%2 an(hyd) - cot h2t) 0
hlan(l)CO(Z =

h, hyt
-}-L—tan(hld)+tan(——)=0 (2)
1

2
where A, and h, are given by
R =k2— k2

h} =kt — ki (3)
where k} = w’ue;, ki =ow’ue,, and k, is the unknown
transmission coefficient of the waveguide.

For a given frequency, (1) or (2) can have more than
one solution. Each solution gives the corresponding mode
of the waveguide. For a real value of k,, we have a
transmitting mode while for an imaginary value we have
an evanescent mode. :

Let us now look at the geometry of a rectangular
waveguide which is loaded with a rectangular post (Fig.
2). The space in the waveguide is divided into three
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Fig. 2. Rectangular post in a rectangular waveguide.
regions:

1) input region;
2) interaction region with three (I, II, III) subregions;
3) output region.

The field is expanded in TE ; modes in the first and
third regions and in the corresponding modes of a strip
loaded waveguide in the second region.

The incoming electric field is

E(x,z)=sin(y x)e/"*

(4)

where

(k§=71)""  ky="—.

Yi=— u,=
a

In the first and third regions the field is expressed as
follows:

Input Region:
El(x,2)= iDm sin (y,,x ) e “m?, (5)
1 :
Output Region:
E)(x,z)= iEmsin(ymx)e’”m:. (6)
1

Here m=1,2,3,---,y,, =mm /a, u,,= (ki —y2)1/2, and
D,, and E, are arbitrary complex coefficients. As we can
s¢e in the present case, we have odd and even eigenval-
ues. This did not happen in previously reported work [4],
where we had only odd eigenvalues. The existence of both
types of eigenvalues comes from the field which is pro-
duced in the interaction region. The electric field for a
given frequency in the interaction region can have odd
or/and even symmetry.

In the interaction region, the field will be expressed
separately in each of the three subregions. In subregions I
and III, for symmetry reasons, the ficld must have a
symmetric expression. So, in our procedure we can use
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Fig. 3. Theoretical and experiment results of the magnitude |R] of the
post as a function of the dielectric constant. The cross-sectional sizes are
shown in the figure.

the expressions of the fields in subregion I. This is

Ey =) sin(hix)( Al 7 + Bleki7). (7
1

In the subregion II the field will be

EyII =Y [Aicos( ’zx) + B, sin (hlzx)]
1

- (A?e_’klz + Bloe’klz) (8)

where ki is the propagation constant of the ith mode of
the strip-loaded waveguide, and A% and B? are the
complex coefficients of the transmitted and the reflected
waves in the interaction region. 4, and B, are complex
expansion coefficients which are selected to satisfy the
continuity condition of the fields at x =d and x =d + ¢:

By = [k% . (k;)z] 2

%)

For the evanescent modes in the interaction region the
term (Aje /%17 + Ble/*17) is replaced by Ce %1z This is
because k! becomes imaginary and the field is attenuated
along z.

Using Maxwell’s equations we can find the correspond-
ing components of the magnetic fields in the input region,
the interaction region, and the outpout region.

The coefficients 4, and B, have already been chosen
to satisfy the continuity conditions at x =d and x =d + ¢.
The other coefficients, A?, B?, C?, E,,, and D,,, must be
chosen to satisfy the continuity conditions at z =0 and
z=— L. From this we obtain four complex linear equa-
tions. By taking the inner product of each equation by
sin(y,,x), we get a system of linear equations with the
unknowns A?, BY, C% E, and D, . For a finite number
of terms in the summations of the field expressions the
system has a finite number of unknowns. In (10) a general

iy = k3 - (k;)z]m.
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expression of the system is given:
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Solving the system for the unknowns, we get D, and E,, which give the reflection and the transmission coefficients.
If the number of terms is increased and a negligible change in the reflection and transmission coefficients results, it is
assumed that the process is convergent and that a sufficient number of terms have been selected for a given order of
accuracy.

The elements S/ of (10) have three terms:

Si=S/,+8,+8], (11)
. sin[ (K —v;)d] B sin[ (K +v;)d] 1)
T (k- ) 2(hi+7,)

ol S Ol g ]

+Bi[( i 1—%) COS((hlé;yj)a)sm(( 5“7]')(%“1))* (h;ij) cos((hé;yf)a)sin((h"ﬁy,.)(%—d))l

(13)
; o cos (('yj—hil)a) cos((yj+h§)a) cos((yj—h’l)(a—- d)) cos((yj+h’;)(a—d))
§{;=sin (hla)[— 2y~ h) B 2y, + 1) + 2(y, - hi) - 2(y; + Bi)
; sin((h’l—yj)a) sin (h"l+yj)a) sin((h’l—yj)(a— d)) sin((hi+yj)(a—-d)) ‘
_Cos(hla)[ A=) 2v+m) 2k T oW+ ' (14)
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Fig. 4. Theoretical and experimental results of |R| versus the dielectric constant for the rectangular post shown in the
figure.

If we suppose that the frequency produces only one
transmission mode (mode with real propagation constant),
we can find the reflection and transmission coefficients by
eliminating all the other coefficients of the evanescent
modes:

1 1
1+ﬁ—e—2ﬂ<1L(1— i
u

Uy 1
R=D;=2 o 5 o > —1 (15)
1+ —| —e 2klf]— 2
u, Uy
1
4ej(u]vk1)L(2E)
Uy
T=E = IR ETes (16)
1+ —| —e2alf- L
U U

In the general case we can solve (10) and find the
reflection and the transmission coefficient at the disconti-
nuity.

Looking at the form of our solution and the form of
that given by Yoshikado and Taniguchi [13], we can easily
see that their expression (5) for the field in the rectangu-
lar post region fits only for one transmitting mode. As the
thickness of the dielectric post increases we have a re-
markable increase in the number of transmission modes.
For example if €,=1 and e,=7.5 for a frequency of
9 GHz, the number of transmission modes varies between
one and four as the thickness varies from ¢/a=0.1 to
0.4. So a difference between the numerical and the exper-
imental results in [13] must be naturally expected.

It must be pointed out that, in general, the number of
transmission modes increases with the frequency, the
dielectric constants e; and e,, and the thickness of the
larger dielectric constant material.

ITI. NuMERICAL RESULTS

In this section/, computed values of the reflection coeffi-
cient for a given post as a function of the dielectric
constant are presented. In all cases we checked the term
IR|* 4+ |T|* (R the reflection and T the transmission coef-
ficient), which for a lossless post must be equal to unity.
Using a system with all the transmission modes M, and
K(K < M) evanescent modes, we solve system (10). K
starts from zero and increases until 1— |R|* — |T|*> <1011,
From the numerical results we found that it must be
equal to zero or at maximum to 1. The computational
time is about 5 s at maximum for a 4381 IBM computer.
In Fig. 3 |R| is shown for two different cross sections. In
the same figure are shown some experimental results
given in [13].

A similar case is also shown in Fig. 4, where our results
are compared with those given in [13]. From the compari-
son we can see that our results are in good agreement
with experiments. Especially in Fig. 4 our method makes
the prediction of resonance very close to the experiments
of [13]. At the same time we can see that we have another
resonance for €, ~ 45. It must be pointed out that a post
with €, ~80-90 has four transmission modes. These are
important in predicting the exact value of |R|. Another
case is shown in Fig. 5, where |R| is compared with the
values given by Uher er al. [15]. Looking at the three
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Fig. 5. Comparison of numerical results of | R| versus the frequency for
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Fig. 6. |R| of an air-filled rectangular post with two dielectric strips

versus frequency.

figures, we can conclude that our method gives more
accurate results than other methods and is in agreement
with the experiments.

Some new cases can be seen for the design of band-pass
and band-stop filters with different configurations. Choos-
ing an air-filled rectangular post with two dielectric strips
on the two vertical conductors of the waveguide, we have
another interesting case. For the geometry given in Fig. 6
we can see that we have a resonance at 8.25 GHz. The
above case suggests a band-pass filter with sintered Al,O,
ceramic strips.

For a band-stop filter, we choose the geometry given in
Fig. 7. Different thicknesses of the strips give different
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Fig. 7. Band-stop filter response of an air-filled rectangular post for
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Fig. 8. Band-pass filter response of an air-filled rectangular post for
two different strip lengths.
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resonant frequencies. By changing the strip length one
can see that the filters become band-pass (see Fig. 8).

The above three cases make it evident that filters with
simple geometries and readily available materials can be
made.

IV. ConcLusioN

A numerical method has been given to analyze rectan-
gular dielectric posts in the middle of a rectangular wave-
guide. From the method it has been found that it is
important to use all the transmitting modes in the interac-
tion region. A comparison with experimental results has
shown the validity of our procedure. Also, some useful
examples for the design of band-pass and band-stop fil-
ters have been presented.
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