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Abstract —A simple numerical technique

the discontinuity problem of a syinmetric
for the solution of
loaded rectangular / /

dielectric post centered in a rectangular waveguide is presented.
The waveguide is divided into three regions where the field is

/

expressed in suitable waveguide modes. By applying the continu-

ity conditions at the common surfaces of the regions, a system of
linear equations determining the reflection and transmission

coefficients is formed. Several examples are compared with

experimental results and show the validity of the method. ‘1 ‘2 ‘1

I. INTRODUCTION
+~d~~ t ~~ d )--

ARIOUS methods for studying the post interactionv 1
in the microwave region have been proposed [1]–[13]. Fig. 1. Geometry of a symmetric strip loaded waveguide.

A post offers the advantage of several applications by

using a small amount of material. So instead of filling the ~J .

entire cross section of a waveguide for permittivity and
smg his formulation for a symmetric geometry (see Fig.

l), we can find the eigenvalue equation which gives the
conductivity measurements or for filter design we can use

posts.
propagation constant [131:

A number of comprehensive works have dealt with tan(hld)

circular posts by using approximate analytical or numeri- tan(h1t)+2~

()

~ =0. (1)

cal methods [11–[121. In this paper we study posts of 1 1– ~ tanz(hld)
rectangular cross section which can be made easily. An 1

excellent study of such a problem has been made recently

by Yoshikado and Taniguchi [13], In their work, an ap-

proximate analytical solution for the Helmholtz equation

was derived and a sifnple method for measuring the

complex conductivity of a square 10SSYdielectric post was

established. The analysis of Yoshikado and Taniguchi has

shown that there are cases for which there is no agree-

ment between the theoretical and experimental results.

This is due to their formulation, which does not satisfy

the boundary conditions at the four corners of the post.

In our work we give the field expression in the iriteraction

region as a function of the partially filled rectangular

waveguide modes. We thus give a better physical descrip-

tion of the field and the results become more reasonable.

11. FORMULATION

We start from a short presentation of a strip-loaded

rectangular waveguide. The propagation problem of this

configuration has been treated extensively by Lewin [14].
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Equation (1) can be split into twd equations:

h, hzt

()
~tan(hld)–cot y =0

1

hz hzt

()
~tan(hld)+tan y =0

1
(2)

where hl and hz are given by

where k; = COzpel, k~I = CO2Pe2, and kl is the unknown

transmission coefficient of the waveguide.

For a given frequency, (1) or (2) can have more than

one solution. Each solution gives the corresponding mode

of the waveguide. For a real value of kl, we have a

transmitting mode while for an imaginary value we have
an evanescent mode.

Let us now look at the geometv of a rectangular

waveguide which is loaded with a rectangular post (Fig.

2). The space in the waveguide is divided into three
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Fig. 2. Rectangular post in a rectangular waveguide.

regions:

1) input region;

2) interaction region with three (I, II, III) subregions;

3) output region.

The field is expanded in TE~O modes in the first and

third regions and in the corresponding modes of a strip

loaded waveguide in the second region.

The incoming electric field is

E;(x, z) = sin(ylx)eJz’IZ (4)

where

In the first and third regions the field is expressed as

follows:

Input Region:

Olltpllt Region:

E~(x, z) = ~E~sin(y~x)e]’’m’. (6)
1

Here m = 1,2,3,. . .,-y~ = rnr/a, Um = (k; – ~,~)lj~, and

D~ and Em are arbitrary complex coefficients. As we can

see in the present case, we have odd and even eigenval-

ues. This did not happen in previously reported work [4],

where we had only odd eigenvalues. The existence of both

types of eigenvalues comes from the field which is pro-

duced in the interaction region. The electric field for a

given frequency in the interaction region can have odd

or/and even symmetry.

In the interaction region, the field will be expressed

separately in each of the three subregions. In subregions I

and III, for symmetry reasons, the field must have a

symmetric expression. So, in our procedure we can use

.0 1 /-- / y--z

01 1 1 \/ , , , \ 4
1 3 s 7 9 11 13 15

Dielectric constant

Fig. 3. Theoretical and experiment results of the magnitude II?] of the
post as a function of the dielectric constant. The cross-sectional sizes are
shown in the figure.

the expressions of the fields in subregion I. This is

E; = ~ sin(h~.x)(A~e-j~lZ + B,”eJkl’). (7)
1

In the subregion 11 the field will be

E~I= ~ [xii cos(h~x) +lljsin(h~x)]

.( AOe-JkIz + ~)ezkz) (f3)L

where k~ is the propagation constant of the ith mode of

the strip-loaded waveguide, and A; and B,” are the

complex coefficients of the transmitted and the reflected

waves in the interaction region. A, and B, are complex

expansion coefficients which are selected to satisfy the

continuity condition of the fields at x = d and .x = d + t:

(9)

For the evanescent modes in the interaction region the

term (A~e ‘Jk” + B,Oe;~]z) is replaced by C,”e ‘~klz. This is

because k; becomes imaginary and the field is attenuated

along z.

Using Maxwell’s equations we can find the correspond-
ing components of the magnetic fields in the input region,

the interaction region, and the outpout region.

The coefficients A, and B, have already been chosen

to satisfy the continuity conditions at x = d and x = d + t.

The other coefficients, A!, B:, C}, Em, and D~, must be

chosen to satisfy the continuity conditions at z = O and

z = – L. From this we obtain four Cotnplex linear equa-

tions. By taking the inner product of each equation by

sin (yn x), we get a system of linear equations with the

unknowns A:, B;, C,”, E,. and D,.. For a finite number

of terms in the summations of the field expressions the

system has a finite number of unknowns. In (10) a general
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expression of the system is given:

1619

——

. .
---—
a

T
0

——_—

I N I N I M I M: K“_________________________________________________________________
I a/2 0!

I I I
I I

N; “. I
I I

o s; I s; : S;+N

I
I I I

o“ a/2 ~ I
__:––--___– –--. I I+—––-----–– —--- *_____ -____ *_-_–– —–—________________

———-

DI

D~
——--

EI

EN
——-—

Ah

A&’
_———

B:

BP
—-——

c;

.c:-

1 I – (a /2)e-’u’4 \ I 1
I
I
I

I
I

I
~ ,y;e-]k~L / S~+Ne-Jk\

t+N)~

I

I

I
;_-–– ————-———-.———_—————

I I

I I

I
I jk~S~ ~ – jk~’N. S~~N

I
I I

I
I I

;_-––––__–l– ––.-–––––––––

I I

I
I

I

N[
I

I
I

I
I

S;ejk~L

I
o

I I
1 0

I I
– (a /2)e-’u~L II

––;–.--_––––––- _;––––
~Jula/2

_-–_____ -–; _____–– _
1 I

I o~ I

N/ “.. I o I – jk~s~

I
o

I I

.
——-—-—

0

_———__
0

—-——-—
0

I
ju~a/2 I

I

__; –––– _ ———————;––– __ –––––––__;________
I I –jul(a/2)e-]u’~ ~

I
I
I
I

I
I

( - j~r+N)

S/+ Ne-]k~+N)L

_——. _—-— ——— ———

1

I I o I
I

I I
–juN(a/2)eJu~L 1I I

I

––; –__-– —----—— ;----- -–---––--+-–___-_____;________
1 I ~ 2M+K=2NI ,

Solving the system for the unknowns, weget D1andE1 ,whichgive the reflection and the transmission coefficients.

If the number of terms is increased and a negligible change in the reflection and transmission coefficients results, it is

assumed that the process is convergent and that a sufficient number of terms have been selected for a given order of

accuracy.

The elements S/ of (10) have three terms:

s{= S:,l + S:,2 + L% (11)

sin[(h~+Yj)d]S1 = ‘in[(h~– ~j)d] _ _
1,1

2(h~ – ~j) 2(IZ; + yi)
(12)

(y:hj)
sin((7j-~`)a)sin((yj-h~)(~-d))+(7j~hi)sin((7j+$)a]sin((~j+h~) ~-d -

))]
S/,2 = Ai

(!,3)

[

Sj,3 = sin(h~a) –
CKM((7j-~!)a) cOs((’YJ+hi)a) +=(( YJ - ‘i)(a ‘“ ‘)) + cOs((yJ + ‘!)(U - ‘))

2(7j– h!) – 2(~j+ h;) 2(7J – h!) 2(7, + h:)

[

sin((lz~-yj)a) _ sin((h\+~j)a) sin((h;- ‘Yj)(a - d)) + sin((h~+~J)(a - d))
–cos(h~a)

2(h; –yj) 2(yj + h;) – 2(h~ – Yj)
I

2(hj + yj) “
(“14)
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Fig. 4. Theoretical and experimental results of IRI versus the dielectric constant for the rectangular post shown in the

figure.

If we suppose that the frequency produces only one

transmission mode (mode with real propagation constant),

we can find the reflection and transmission coefficients by

eliminating all the other coefficients of the evanescent

modes:

R= D1=2

(’+:}2-’-k’)(’:!)2)2-’ ‘1’)

()4ej(u1 -kl)L 25

In the general case we can solve (10) and find the

reflection and the transmission coefficient at the disconti-

nuity.

Looking at the form of our solution and the form of

that given by Yoshikado and Taniguchi [13], we can easily

see that their expression (5) for the field in the rectangu-

lar post region fits only for one transmitting mode. As the

thickness of the dielectric post increases we have a re-

markable increase in the number of transmission modes.

For example if El= 1 and ●z = 7.5 for a frequency of

9 ~Hz, the number of transmission modes varies between

one and four as the thickness varies from t/a = 0.1 to

0.4. So a difference between the numerical and the exper-

imental results in [13] must be naturally expected.

It must be pointed out that, in general, the number of

transmission modes increases with the frequency, the

dielectric constants El and e2, and the thickness of the

larger dielectric constant material.

HI. NUMERICAL RESULTS

In this section; computed values of the reflection coeffi-

cient for a given post as a function of the dielectric

constant are presented. In all cases we checked the term

IRIZ + IT]Z (~ the reflection and T the transmission Coef.
ficient), which for a lossless post must be equal to unity.

Using a system with all the transmission modes M, and
lC(lK < M) evanescent modes, we solve system (10). K

starts from zero and increases until 1 – IRlz – ITI 2<10 – ll.

From the numerical results we found that it must be

equal to zero or at maximum to 1. The computational

time is about 5 s at maximum for a 4381 IBM computer.

In Fig. 3 IRI is shown for two different cross sections. In

the same figure are shown some experimental results
given in [13].

A similar case is also shown in Fig. 4, where our results

are compared with those given in [13]. From the compari-

son we can see that our results are in good agreement

with experiments. Especially in Fig. 4 our method makes

the prediction of resonance very close to the experiments

of [13]. At the same time we can see that we have another

resonance for CyN 45. It must be pointed out that a post

with ~, = 80–90 has four transmission modes. These are

important in predicting the exact value of IR 1. Another

case is shown in Fig. 5, where 1111is compared with the

values given by Uher et al. [15]. Looking at the three
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Fig. 6. IRl of an air-filled rectangular post with two dielectric strips

versus frequency.

figures, we can conclude that our

accurate results than other methods

with the experiments.

method gives more

and is in agreement

Some new cases can be seen for the design of band-pass

and band-stop filters with different configurations. Choos-

ing an air-filled rectangular post with two dielectric strips
on the two vertical conductors of the waveguide, we have

another interesting case. For the geometry given in Fig. 6

we can see that we have a resonance at 8.25 GHz. The

above case suggests a band-pass filter with sintered A1203

ceramic strips.

For a band-stop filter, we choose the geometry given in

Fig. 7. Different thicknesses of the strips give different

d/k *

+L-
. . . . . ..

z

1~

E+24.3

L/a=.6

Fig. 7. Band-stop filter response of an air-filled rectangular post far

two different strip thicknesses.
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Fig. 8. Band-pass filter response of an air-filled rectangular post for

two different strip lengths.

resonant frequencies. By changing the strip length one

can see that the filters become band-pass (see Fig. 8).

The above three cases make it evident that filters with

simple geometries and readily available materials can be

made.

IV, CONCLUSION

A numerical method has been given to analyze rectan-

gular dielectric posts in the middle of a rectangular wave-
guide. From the method it has been found that it is

important to use all the transmitting modes in the interac-

tion region. A comparison with experimental results has

shown the validity of our pracedure. Also, some useful

examples for the design of band-pass and band-stop fil-

ters have been presented.
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